3.412 \(\int \frac{\left (a+b x^2\right )^p}{d+e x} \, dx\)

Optimal. Leaf size=125 \[ \frac{x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{d}-\frac{e \left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 (p+1) \left (a e^2+b d^2\right )} \]

[Out]

(x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/(d*(1 +
 (b*x^2)/a)^p) - (e*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (e^2*
(a + b*x^2))/(b*d^2 + a*e^2)])/(2*(b*d^2 + a*e^2)*(1 + p))

_______________________________________________________________________________________

Rubi [A]  time = 0.225172, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.294 \[ \frac{x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{d}-\frac{e \left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 (p+1) \left (a e^2+b d^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x^2)^p/(d + e*x),x]

[Out]

(x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/(d*(1 +
 (b*x^2)/a)^p) - (e*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (e^2*
(a + b*x^2))/(b*d^2 + a*e^2)])/(2*(b*d^2 + a*e^2)*(1 + p))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 17.5953, size = 119, normalized size = 0.95 \[ \frac{\left (\frac{e \left (\sqrt{b} x + \sqrt{- a}\right )}{\sqrt{b} \left (d + e x\right )}\right )^{- p} \left (- \frac{e \left (- \sqrt{b} x + \sqrt{- a}\right )}{\sqrt{b} \left (d + e x\right )}\right )^{- p} \left (a + b x^{2}\right )^{p} \operatorname{appellf_{1}}{\left (- 2 p,- p,- p,- 2 p + 1,\frac{d - \frac{e \sqrt{- a}}{\sqrt{b}}}{d + e x},\frac{d + \frac{e \sqrt{- a}}{\sqrt{b}}}{d + e x} \right )}}{2 e p} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x**2+a)**p/(e*x+d),x)

[Out]

(e*(sqrt(b)*x + sqrt(-a))/(sqrt(b)*(d + e*x)))**(-p)*(-e*(-sqrt(b)*x + sqrt(-a))
/(sqrt(b)*(d + e*x)))**(-p)*(a + b*x**2)**p*appellf1(-2*p, -p, -p, -2*p + 1, (d
- e*sqrt(-a)/sqrt(b))/(d + e*x), (d + e*sqrt(-a)/sqrt(b))/(d + e*x))/(2*e*p)

_______________________________________________________________________________________

Mathematica [A]  time = 0.102687, size = 131, normalized size = 1.05 \[ \frac{\left (a+b x^2\right )^p \left (\frac{e \left (x-\sqrt{-\frac{a}{b}}\right )}{d+e x}\right )^{-p} \left (\frac{e \left (\sqrt{-\frac{a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac{d-\sqrt{-\frac{a}{b}} e}{d+e x},\frac{d+\sqrt{-\frac{a}{b}} e}{d+e x}\right )}{2 e p} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(a + b*x^2)^p/(d + e*x),x]

[Out]

((a + b*x^2)^p*AppellF1[-2*p, -p, -p, 1 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (
d + Sqrt[-(a/b)]*e)/(d + e*x)])/(2*e*p*((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e
*(Sqrt[-(a/b)] + x))/(d + e*x))^p)

_______________________________________________________________________________________

Maple [F]  time = 0.057, size = 0, normalized size = 0. \[ \int{\frac{ \left ( b{x}^{2}+a \right ) ^{p}}{ex+d}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x^2+a)^p/(e*x+d),x)

[Out]

int((b*x^2+a)^p/(e*x+d),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{2} + a\right )}^{p}}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p/(e*x + d),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p/(e*x + d), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{p}}{e x + d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p/(e*x + d),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p/(e*x + d), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (a + b x^{2}\right )^{p}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x**2+a)**p/(e*x+d),x)

[Out]

Integral((a + b*x**2)**p/(d + e*x), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{2} + a\right )}^{p}}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p/(e*x + d),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p/(e*x + d), x)